Forces

Forces occur through interactions between pairs of objects
A force is a directed push or a directed pull exerted on an object by another object.

The preceding statement merely associates one term, force, that is yet to be defined with alternative terms, "push" and "pull," that are likewise not defined. Force is a postulated (vector) quantity.

$[F]=\mathrm{N}$

Newton III

$$
\begin{gathered}
\text { There exists } \overrightarrow{\mathbf{F}}_{-2 \rightarrow 1} \\
\Rightarrow \\
\text { there also exists } \\
\overrightarrow{\mathbf{F}}_{-1 \rightarrow 2}=-\overrightarrow{\mathbf{F}}_{-2,2 \rightarrow 1}
\end{gathered}
$$

Forces

Examples of common forces
Weight ((nearly) on Earth) toward Earth

$$
\left[m_{\mathrm{G}}\right]=\mathrm{kg} \quad g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Tension back into string

No memorized formula

N
No memorized formula

Static friction

|| to interface, opposes interfacial slippage
Case I. Less than maximum that can be sustained for a given normal force

Case II. Maximum that can be sustained for a given normal force

Case III. Beyond maximum that can be sustained for a given normal force

"According to $f_{\mathrm{S}} \leq \mu_{\mathrm{S}} N, f_{\mathrm{S}}$ cannot exceed $\mu_{\mathrm{S}} N$. If \ldots were stuck, $\ldots f_{\mathrm{S}}$ would need to equal ..., exceeding $\mu_{\mathrm{S}} N$. So, instead of being stuck, ... must have slipped."

$$
f_{\mathrm{S}}>\mu_{\mathrm{S}} N
$$

Kinetic friction

|| to interface, opposes interfacial slippage

$f_{\mathrm{K}}=\mu_{\mathrm{K}} N$

Forces

How are force and acceleration related for material objects?

Newton I for material objects

$$
\sum \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}} \Leftrightarrow\left\{\begin{array}{c}
\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}} \\
\text { constant } \overrightarrow{\mathbf{v}}
\end{array}\right.
$$

inertial frame - frame of reference in which Newton's first law holds

Newton II for material objects
An object's inertial mass is the amount of that object's tendency to not accelerate.

$$
\left[m_{\mathrm{I}}\right]=\mathrm{kg}
$$

An inertial mass of 1 kg requires precisely 1 N of net force in order to have an acceleration of $1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

