Forces

Forces occur through interactions between pairs of objects

A **force** is a directed push or a directed pull exerted on an object by *another* object.

The preceding statement merely associates one term, force, that is yet to be defined with alternative terms, "push" and "pull," that are likewise not defined. **Force is a postulated** (vector) **quantity**.

Newton III

There exists $\vec{\mathbf{F}}_{_,2\rightarrow1}$ \Rightarrow there also exists $\vec{\mathbf{F}}_{_,1\rightarrow2} = -\vec{\mathbf{F}}_{_,2\rightarrow1}$

Forces

Examples of common forces

Weight ((nearly) on Earth) toward Earth

$$F_{
m G} = m_{
m G} g$$
 $[m_{
m G}] = {
m kg}$ $g = 9.8 \, {
m m}{
m s^2}$

Tension back into string

No memorized formula

Normal

No memorized formula

Static friction

Case II. Maximum that can be sustained for a given normal force

$$f_{\rm S} = \mu_{\rm S} N$$

"According to $f_{\rm S} \leq \mu_{\rm S} N$, $f_{\rm S}$ <u>cannot</u> exceed $\mu_{\rm S} N$. If ... <u>were</u> stuck, ... $f_{\rm S}$ <u>would</u> need to equal ..., exceeding $\mu_{\rm S} N$. So, instead of being stuck, ... must have slipped."

$$f_{\rm S} > \mu_{\rm S} N$$

Kinetic friction

|| to interface, opposes interfacial slippage

Forces

How are force and acceleration related for material objects?

	$\vec{\mathbf{a}} = \vec{0}$ constant $\vec{\mathbf{v}}$	$\vec{a} eq \vec{0}$ changing \vec{v}
$\sum \vec{\mathbf{F}} = \overrightarrow{0}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\sum \vec{\mathbf{F}} \neq \vec{0}$	$\begin{array}{c} \mathbf{r} \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Newton I for material objects

$$\sum \vec{\mathbf{F}} = \vec{\mathbf{0}} \Leftrightarrow \left\{ \vec{\mathbf{a}} = \vec{\mathbf{0}} \atop \text{constant } \vec{\mathbf{v}} \right\}$$

inertial frame – frame of reference in which Newton's first law holds

Newton II for material objects

$$\vec{\mathbf{a}} = \frac{\sum \vec{\mathbf{F}}}{m_z}$$

An object's inertial mass is the amount of that object's tendency to not accelerate.

$$[m_{\rm I}]={
m kg}$$

An inertial mass of 1 kg requires precisely 1 N of net force in order to have an acceleration of $1\frac{m}{s^2}$.